
Run Time Polymorphism Against Virtual Function in
Object Oriented Programming

Devendra Gahlot#1, S. S. Sarangdevot#2, Sanjay Tejasvee#3

#Department of Computer Application, Govt. Engineering College Bikaner, Bikaner, Rajasthan, India.

#Depertment of IT & CS, Janardan Rai Nagar Rajasthan Vidyapeeth University, Pratap Nagar, Udaipur, Rajasthan, India)

#Department of Computer Application,Govt. Engineering College Bikaner,Bikaner ,Rajasthan,India.

Abstract- The Polymorphism is the main feature of Object
Oriented Programming. Run Time Polymorphism is concept of
late binding; means the thread of the program will be
dynamically executed, according to determination of the
compiler. In this paper, we will discuss the role of Run Time
Polymorphism and how it can be effectively used to increase the
efficiency of the application and overcome complexity of
overridden function and pointer object during inheritance in
Object Oriented programming.

 1. INTRODUCTION TO POLYMORPHISM IN OBJECT-
ORIENTED PROGRAMMING

Subtype polymorphism, almost universally called just polymorphism
in the context of object-oriented programming, is the ability of one
type, A, to appear as and be used like another type, B. This article is
an accessible introduction to the topic, which restricts attention to the
object-oriented paradigm. The purpose of polymorphism is to
implement a style of programming called message-passing in the
literature[citation needed], in which objects of various types define a
common interface of operations for users.

In strongly typed languages, polymorphism usually means that type
A somehow derives from type B, or type C implements an interface
that represents type B. In weakly typed languages types are implicitly
polymorphic.

Operator overloading of the numeric operators (+, -, *, and /) allows
polymorphic treatment of the various numerical types: integer,
unsigned integer, float, decimal, etc; each of which have different
ranges, bit patterns, and representations. Another common example is
the use of the "+" operator which allows similar or polymorphic
treatment of numbers (addition), strings (concatenation), and lists
(attachment). This is a lesser used feature of polymorphism. The
primary usage of polymorphism in industry (object-oriented
programming theory) is the ability of objects belonging to different
types to respond to method, field, or property calls of the same name,
each one according to an appropriate type-specific behavior. The
programmer (and the program) does not have to know the exact type
of the object in advance, and so the exact behavior is determined at
run-time (this is called late binding or dynamic binding).

The different objects involved only need to present a compatible
interface to the clients' (calling routines). That is, there must be
public or internal methods, fields, events, and properties with the

same name and the same parameter sets in all the super classes,
subclasses and interfaces. In principle, the object types may be
unrelated, but since they share a common interface, they are often
implemented as subclasses of the same super class. Though it is not
required, it is understood that the different methods will also produce
similar results (for example, returning values of the same type).

Polymorphism is not the same as method overloading or method
overriding.[1] Polymorphism is only concerned with the application
of specific implementations to an interface or a more generic base
class. Method overloading refers to methods that have the same name
but different signatures inside the same class. Method overriding is
where a subclass replaces the implementation of one or more of its
parent's methods. Neither method overloading nor method overriding
are by themselves implementations of polymorphism.[2]

Type of Polymorphism

Function Overloading Operator Overloading

Compile Time Polymorphism

Virtual Function

Run Time Polymorphism

Polymorphism

 2.INHERITANCE WITH POLYMORPHISM(VIRTUAL

FUNCTION)

If a Dog is commanded to speak (), it may emit a bark, while if a Pig
is asked to speak (), it may respond with an oink. Both inherit
speak () from Animal, but their subclass methods override the
methods of the super class, known as overriding polymorphism.
Adding a walk method to Animal would give both Pig and Dog
objects the same walk method.

Inheritance combined with polymorphism allows class B to inherit
from class A without having to retain all features of class A; it can do
some of the things that class A does differently. This means that the
same "verb" can result in different actions as appropriate for a
specific class. Calling code can issue the same command to their
super class or interface and get appropriately different results from
each one.

Devaendra Gahlot et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 569-571

569

C++
#include <iostream.h>
#include <string.h>
class Animal
{
 public:
 Animal(const string& name) : name(name) {}
 virtual string talk() = 0;
 const string name;
};
class Cat : public Animal
{
 public:
 Cat(const string& name) : Animal(name) {}
 virtual string talk() { return "Meow!"; }
};
 class Dog : public Animal
{
 public:
 Dog(const string& name) : Animal(name) {}
 virtual string talk() { return "Arf! Arf!"; }
};
 // prints the following:
// Missy: Meow!
// Mr. Mistoffelees: Meow!
// Lassie: Arf! Arf!
int main()
{
 Animal* animals[] ={
 new Cat("Missy"),
 new Cat("Mr. Mistoffelees"),
 new Dog("Lassie")
 };
 for(int i = 0; i < 3; i++){
cout << animals[i]->name << ": " << animals[i]->talk() << endl;
delete animals[i];}
return 0;
}
Note: that the talk() method is explicitly declared as virtual. This is
because non-polymorphic method calls are very efficient in C++ and
a polymorphic method call is roughly equivalent to calling a function
through a pointer stored in an array.[3] To take advantage of the
efficiency of non-polymorphic calls, all method calls are treated as
non-polymorphic, unless explicitly marked as virtual by the
developer.

Java
interface Animal
{
 String getName();
 String talk();
}
abstract class AnimalBase implements Animal
{
 private final String name;

 protected AnimalBase(String name){
 this.name = name;
 }

 public String getName(){
 return name;
 }

}
 class Cat extends AnimalBase
{

 public Cat(String name) {
 super(name);
 }
 public String talk(){
 return "Meowww!";
 }
}
 class Dog extends AnimalBase
{
 public Dog(String name) {
 super(name);
 }
 public String talk(){
 return "Arf! Arf!";
 }
}

public class TestAnimals
{
 // prints the following:
 // Missy: Meowww!
 // Mr. Mistoffelees: Meowww!
 // Lassie: Arf! Arf!
 public static void main(String[] args)
 {
 Animal[] animals = {
 new Cat("Missy"),
 new Cat("Mr. Mistoffelees"),
 new Dog("Lassie")
 };
 for (Animal a : animals){
 System.out.println(a.getName() + ": " + a.talk());
 }
 }
}

 3. PARAMETRIC POLYMORPHISM

In computer science, the term polymorphism has several different but
related meanings; one of these, known as parametric polymorphism
in type system theory and functional programming languages, is
known as generic programming in the Object Oriented Programming
Community and is supported by many languages including C++, C#
and Java.

Generics allow compile-time type-safety and other benefits and/or
disadvantages depending on the language's implementation.

C++ implements parametric polymorphism through templates. The
use of templates requires the compiler to generate a separate instance
of the templated class or function for every permutation of type
parameters used with it, which can lead to code bloat and difficulty
debugging. Benefit C++ templates have over Java and C# is that they
allow for template metaprogramming, which is a way of pre-
evaluating some of the code at compile-time rather than run-time.

Java parametric polymorphism is called generics and implemented
through type erasure.
C# parametric polymorphism is called generics and implemented by
reification, making C# the only language of the three which supports
parametric polymorphism as a first class member of the language.
This design choice is leveraged to provide additional functionality,
such as allowing reflection with preservation of generic types, as well
as alleviating some of the limitations of erasure (such as being unable

Devaendra Gahlot et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 569-571

570

to create generic arrays). This also means that there is no
performance hit from runtime casts and normally expensive boxing
conversions. When primitive and value types are used as generic
arguments, they get specialized implementations, allowing for
efficient generic collections and methods.

 4. DISCUSSION

As far as research is concern, we are going to discuss run-time
polymorphism in c++. At time of class inheritance, if we override the
function means redefinition of function through base class to related
derived class. At the time of calling overridden function of desired
class means run-time polymorphism; compiler will decide that which
function going to be called. Basically to do this we have to use
virtual function with pointer object. Which is little bit complicated,
because the use of pointer used to complex.

Exmaple.
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
#include<stdio.h>
class a{
 public:
 virtual void show() {
 cout<<"show a class";
 }
};
class b:public a
{
 public:
 virtual void show() {
 cout<<"show b class";
 }
};
class c:public b
{
 public:
 void show(){
 cout<<"show c class";
 }
};
void main()
{
clrscr();
a *ap,A;
b B;
c C;
cout<<”memeory =”<<sizeof(ap)+sizeof(A)+sizeof(B)+sizeof(C);
ap=&A;
ap->show();
ap=&B;
ap->show();
ap=&C;
ap->show();
getch();
}
To call the show function of related class. We must use pointer object
with reference of object of the class of related function. The research
is concern that without using virtual and pointer object; the process
can be implemented. When we adopt nesting of classes with law
memory requirement rather then virtual or pointer object.
#include<iostream.h>
#include<conio.h>

#include<stdlib.h>
#include<stdio.h>
class a
{
 public:
 void show(){
 cout<<"show a class";
 }

 class b{
 public:

 void show(){
 cout<<"show b class";
 }

 }B;
 class c{
 public:

 void show()
 {
 cout<<"show c class";
 }

 }C;
};
void main()
{
clrscr();
cout<<sizeof(A)+sizeof(A.C)+sizeof(A.B);
A.show();
A.B..show();
A.C.show();
getch();
}

5. CONCLUSION

When we implement multilevel inheritance in C++ To avoid
complexity due to virtual function or pointer object and their required
memory management by compiler can be overcome using nesting of
class. In this method, you also can define visibility of data and
method like inheritance and you can call desired overridden function
in different class without virtual function and object pointer with low
memory requirement. This method will improve efficiency of
program with less complexity.

 REFERENCES
[1]Sierra, Kathy; Bert Bates (2005). Head First Java, 2nd Ed.. O'Reilly
Media, Inc.. ISBN 0596009208.
[2]Stroustrup, Bjarne (2000). The C++ Programming Language Special
Edition. O'Reilly Media, Inc.. ISBN 0-201-70073-5.
[3] "Technical Report on C++ Performance", ISO/IEC TR 18015:2006(E)

Devaendra Gahlot et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 569-571

571

